Hopfological algebra and categorification at a root of unity: the first steps

نویسنده

  • Mikhail Khovanov
چکیده

Any finite-dimensional Hopf algebra H is Frobenius and the stable category of H-modules is triangulated monoidal. To H-comodule algebras we assign triangulated module-categories over the stable category of H-modules. These module-categories are generalizations of homotopy and derived categories of modules over a differential graded algebra. We expect that, for suitable H, our construction could be a starting point in the program of categorifying quantum invariants of 3-manifolds. 1 Hopfological algebra Introduction. Two of the better known examples of triangulated categories are the category of complexes of modules over a ring A, up to chain homotopy, and the derived category D(A−mod). The first category is the quotient of the abelian category of complexes of A-modules by the ideal of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bost–connes Systems, Categorification, Quantum Statistical Mechanics, and Weil Numbers

In this article we develop a broad generalization of the classical Bost-Connes system, where roots of unit are replaced by an algebraic datum consisting of an abelian group and a semi-group of endomorphisms. Examples include roots of unit, Weil restriction, algebraic numbers, Weil numbers, CM fields, germs, completion of Weil numbers, etc. Making use of the Tannakian formalism, we categorify th...

متن کامل

An Elementary Introduction to Categorical Representation Theory

In this expository article, we will give a brief introduction to the categorical representation theory, some of which can be found in [8, 9]. The idea of categorification dates back to I. B. Frenkel. He proposed that one can construct a tensor category whose Grothendieck ring is isomorphic to the representation theory of the simplest quantum group Uq(sl2) (see, for example, [6, 7]). Since then,...

متن کامل

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

ar X iv : m at h / 03 04 17 3 v 2 [ m at h . R T ] 2 5 Fe b 20 04 Quantum Groups , the loop Grassmannian , and the Springer resolution

We establish equivalences of the following three triangulated categories: Dquantum(g) ←→ D G coherent(Ñ ) ←→ Dperverse(Gr). Here, Dquantum(g) is the derived category of the principal block of finite dimensional representations of the quantized enveloping algebra (at an odd root of unity) of a complex semisimple Lie algebra g; the category D coherent(Ñ ) is defined in terms of coherent sheaves o...

متن کامل

ar X iv : m at h / 03 04 17 3 v 3 [ m at h . R T ] 2 1 A pr 2 00 4 Quantum Groups , the loop Grassmannian , and the Springer resolution

We establish equivalences of the following three triangulated categories: Dquantum(g) ←→ D G coherent(Ñ ) ←→ Dperverse(Gr). Here, Dquantum(g) is the derived category of the principal block of finite dimensional representations of the quantized enveloping algebra (at an odd root of unity) of a complex semisimple Lie algebra g; the category D coherent(Ñ ) is defined in terms of coherent sheaves o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005